306,577 research outputs found

    Managing Soil Quality: Challenges in Modern Agriculture

    Get PDF
    Soil quality is a concept that allows soil functions to be related to specific purposes. Previous books on soil quality have emphasized descriptive aspects, by focusing on e.g. soil quality indicators, indexing, and minimum data sets. This book takes a management oriented approach by identifying key issues in soil quality and management options to enhance the sustainability of modern agriculture. Topics covered include major plant nutrients (N, P, K), soil acidity, soil organic matter, soil biodiversity, soil compaction, erosion, pesticides and urban waste. Also included are in-depth treatments of the soil quality concept, its history, and its applicability in research and in developed and developing societies. The book will be of significant interest to post-graduate students and researchers in agronomy and in soil, crop and environmental sciences, and to stakeholders involved in issues related to land use and agricultural development

    NASA'S Water Resources Element Within the Applied Sciences Program

    Get PDF
    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related problems are seriously affecting human health and our environment. The NASA Water Resources Program Element works to use NASA products to address these critical issues

    NASA Water Resources Program

    Get PDF
    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its projects under five functional themes. I) Streamflow and Flood Forecasting 2) Water Supply and Irrigation (includes evapotranspiration) 3) Drought 4) Water Quality 5) Climate and Water Resources. To maximize this activity NASA Water Resources Program works closely with other government agencies (e.g., the National Oceanic and Atmospheric Administration (NOAA); the U.S. Department of Agriculture (USDA); the U.S. Geological Survey (USGS); the Environmental Protection Agency (EPA), USAID, the Air Force Weather Agency (AFWA)), universities, non-profit national and international organizations, and the private sector. The NASA Water Resources program currently is funding 21 active projects under the functional themes (http://wmp.gsfc.nasa.gov & http://science.nasa.gov/earth-science/applied-sciences/)

    Contribution of agronomy to land management issues - A Comparison of five interdisciplinary PhD theses

    Full text link
    An introductory literature review highlights the growing attention within the processes taking place at farming region and landscape scale beside the classical spatial scales at cultivated/experimental plot level. This recent evolution in agronomy finds its origin in newly emerging land management issues. Meanwhile, geography and other disciplines are stressing the need for a greater integration of multifunctional agricultural activities into the decision-making processes at the various levels of land management, such as provinces, municipalities or watersheds. This requires also that studies on farmland management include explicitly the different environmental and social contexts influencing farming activities. In this paper we aim to analyse how recent agronomic oriented research are facing and supporting various land management issues. We have compared five interdisciplinary PhD theses examining their definitions and methods of analysis for: the farming system, the local land management issues at stake, the spatial scale selected for the study, the stakeholders' involvement and the interaction with other disciplines. Common issues which emerged from this comparison are delivery of agro-environmental services, sustainable land management and landscape conservation. Multiple spatial levels were considered, which included at least one administrative unit of policy decision/implementation. Consequently, the explicit (re)definition of some agronomic concepts and methods was needed. Regarding the interdisciplinary framework, the theses have stressed the interactions among agronomy, geography and ecology. All theses aimed at delivering tools for decision-making support, mainly in the form of cartography. Nevertheless the participation of local stakeholders was generally included as a final step; herewith the settings of stakeholders' involvement were various. In conclusion, we discuss how the produced knowledge has enhanced the land management issues in local planning tools. On these bases, we stress finally the issues at stake to strengthen the roles and contributions of agronomic oriented education and research to agricultural land management and development. (Résumé d'auteur

    Review of Australian land use mapping and land management practice

    Get PDF
    Land use information plays a vital role in effective management of natural resources in any country. The land use and land cover mapping is always a dynamic issue in every country because of the changing nature of the land use. Australia is experiencing similar traits. Knowledge of land use change patterns has important implications for sustainable development and sustainable environmental management. It helps in the management of water, soil, nutrients, plants and animals and provides relationship between land use dynamics and economics and social condition in urban and regional area. Although Australia has a long history of land use mapping and land management practice, no systematic study of the land use mapping status and land management practice can be confirmed. With the establishment of the Commonwealth Advisory Committee on the Environment in June 1972, later known as the Australian Advisory Committee on the Environment, the Australian government gave prime importance to land use and the environment. The committee recommended to the government that “Land use is fundamental to any consideration of the environment.” The committee also found an urgent need for an efficient, co-ordinated, and comprehensive system of national and state land use planning. Subsequently, many organizations and institutions like BRS, ACLUMP, CSIRO, QDERM, and DPI started on land cover/land use mapping from national to catchment level and many Land Care groups began working on land management the local level. This study reviews the status of the land use mapping and land management practices as implemented in Australi

    Sustainable Irrigation in Agriculture: An Analysis of Global Research

    Get PDF
    Irrigated agriculture plays a fundamental role as a supplier of food and raw materials. However, it is also the world’s largest water user. In recent years, there has been an increase in the number of studies analyzing agricultural irrigation from the perspective of sustainability with a focus on its environmental, economic, and social impacts. This study seeks to analyze the dynamics of global research in sustainable irrigation in agriculture between 1999 and 2018, including the main agents promoting it and the topics that have received the most attention. To do this, a review and a bibliometric analysis were carried out on a sample of 713 articles. The results show that sustainability is a line of study that is becoming increasingly more prominent within research in irrigation. The study also reveals the existence of substantial differences and preferred topics in the research undertaken by different countries. The priority issues addressed in the research were climatic change, environmental impact, and natural resources conservation; unconventional water resources; irrigation technology and innovation; and water use efficiency. Finally, the findings indicate a series of areas related to sustainable irrigation in agriculture in which research should be promoted

    An Analysis of Global Research Trends on Greenhouse Technology: Towards a Sustainable Agriculture

    Get PDF
    Greenhouse farming is an agricultural management system that has demonstrated its efficiency in intensifying food production. These systems constitute a feasible alternative for ensuring food supply, which is one of the greatest challenges faced by humankind in the twenty-first century. Technology has been able to meet the challenges related to greenhouse farming in both contributing to overcoming its limitations, correcting adverse impacts and ensuring system sustainability. The objective of this article is to analyse the global research trends in greenhouse technology over the last two decades, in order to identify the main driving agents, the most outstanding research lines and possible gaps in the literature. Different methodologies have been used for the analysis; both quantitative and qualitative. The principal results show that there are different relevant lines of research related to different aspects of greenhouse farming: the use of water for irrigation, the design of the optimum structure of the greenhouse, conserving the soil in the best growing conditions, energy consumption of the system as a whole, climate control within the facility and pest control. The research is characterized by the being composed largely of ad hoc studies, which hinders the international collaboration between researchers and institutions. The research approach has shifted from being focused on increasing production and cost savings to aspects related to resource conservation and sustainability
    corecore